System Analysis and Control Department

International workshop: Characteristics of Green Technological Transformation in Accordance with EGD Vision Uzhhorod, Ukraine

Advancing sustainability in medical supply chains through two-stage continuous-discrete location problem

Oleksii Serhieiev, postgraduate student, *Ukraine*

Co-authors: Svitlana Us, Cand. Sc. (Phys.-Math.), Ukraine

Agenda

1 Medical logistics definition

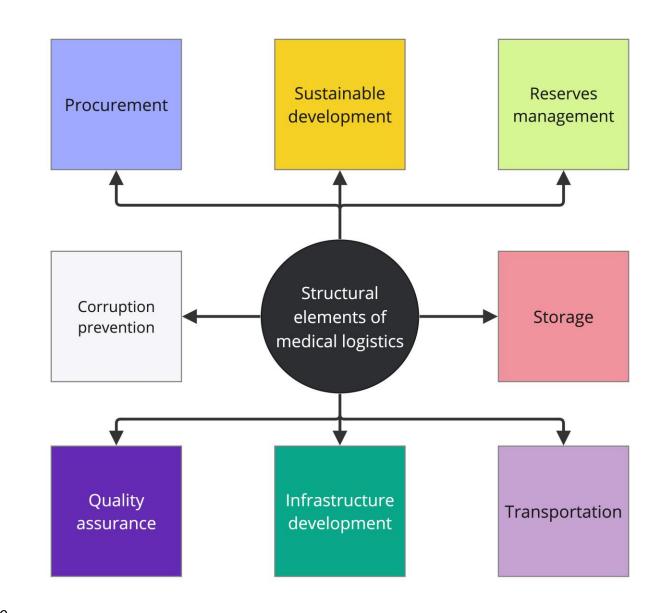
2 Medical logistics system

3 Practical problem statement

4 Mathematical model

5 Solution approach

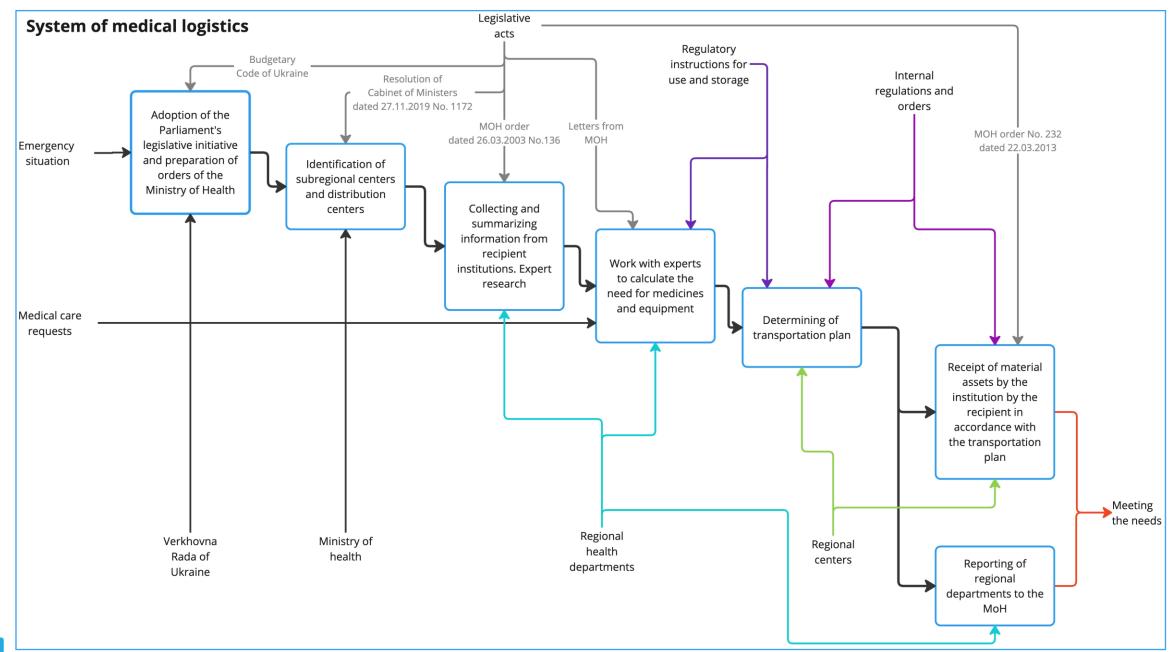
6 Algorithm for solving


7 Model tasks

8 Future research

Medical logistics

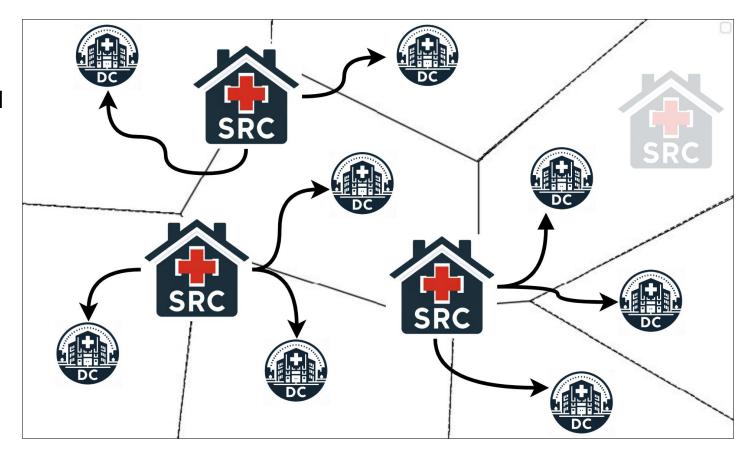
- Medical logistics the process of managing the flow of medical supplies, equipment, and personnel to ensure that healthcare facilities have the necessary resources to provide effective care.
- medical logistics is not a single process but a complex system of subprocesses;
- we will mainly focus on transportation and infrastructure development improvements.



Our motivation and relevance

Optimization of processes during crisis when emergency response is required:

- Pandemic
- War
- Sustainability improvement
- Humanitarian aid
- New medicine supply programs



Practical problem statement

- Subregional centers центри (SRC): Necessary for intermediate transportation.
- Limitations: only some SRCs can be activated
- Distribution: SRCs receive medical supplies from RCs and redistribute them to DCs.
- Tasks:
 - determine locations of DCs;
 - determine the effective combination of SRCs and the optimal transportation plan.
- Goals:
 - minimizing overall transportation costs;
 - meeting the needs of each institution for medicines and medical supplies;
 - infrastructure development.

Mathematic model

- Ω customer distribution area;
- N the required number of DCs;
- M the total number of SRCs available for activation;
- L the maximum number of possible activated SRCs;
- J set of subregional centers available for activation;
- b_i^I demand of the *i*-the DC, $i = \overline{1, N}$.
- b_j^{II} capacity of the *j*-th SRC, $j = \overline{1, M}$;
- A_i activation costs for j-th SRC;
- $c_i^I = c(x, \tau_i^I)$ transportation cost between DC *i* and customer at *x*;
- $c_{ij} = c(\tau_i^I, \tau_j^{II})$ transportation cost between SRC (τ_j^{II}) and DC (τ_i^I) ;
- $\rho(x)$ demands from medicines in point x of the area Ω ;
- $\tau_i^r = (\tau_{i1}^r, \tau_{i2}^r)$ coordinates of DC(r=I) or SRC (r=II);
- v_{ij}^{I} the volume weight units number of medicines and medical equipment transported from SRC j to DC i;
- $\theta_j = \begin{cases} 1, & \text{if SRC j is activated,} \\ 0, & \text{otherwise} \end{cases}$

$$\min_{\theta(\cdot) \in \Gamma_2, \tau^I \in \Omega^N, v \in R_{NM}^+} \sum_{j=1}^M A_j \theta_j + \sum_{i=1}^N \int_{\Omega_i} c_i^I(x, \tau_i^I) \rho(x) dx + \sum_{i=1}^N \sum_{j=1}^M c_{ij} v_{ij}^I \theta_j,$$
 (1)

$$\sum_{j=1}^{M} v_{ij}^{I} \theta_{j} = \int_{\Omega_{i}} \rho(x) dx, \qquad i = \overline{1, N},$$
 (2)

$$\sum_{i=1}^{N} v_{ij}^{I} \theta_{j} \le b_{j}^{II}, \qquad j = \overline{1, M}, \tag{3}$$

$$\sum_{j=1}^{M} \theta_j \le L,\tag{4}$$

$$\bigcup_{i=1}^{N} \Omega_i = \Omega, \tag{5}$$

$$\Omega_i \bigcap \Omega_j = 0, i \neq j, i, j = \overline{1, N}, \tag{6}$$

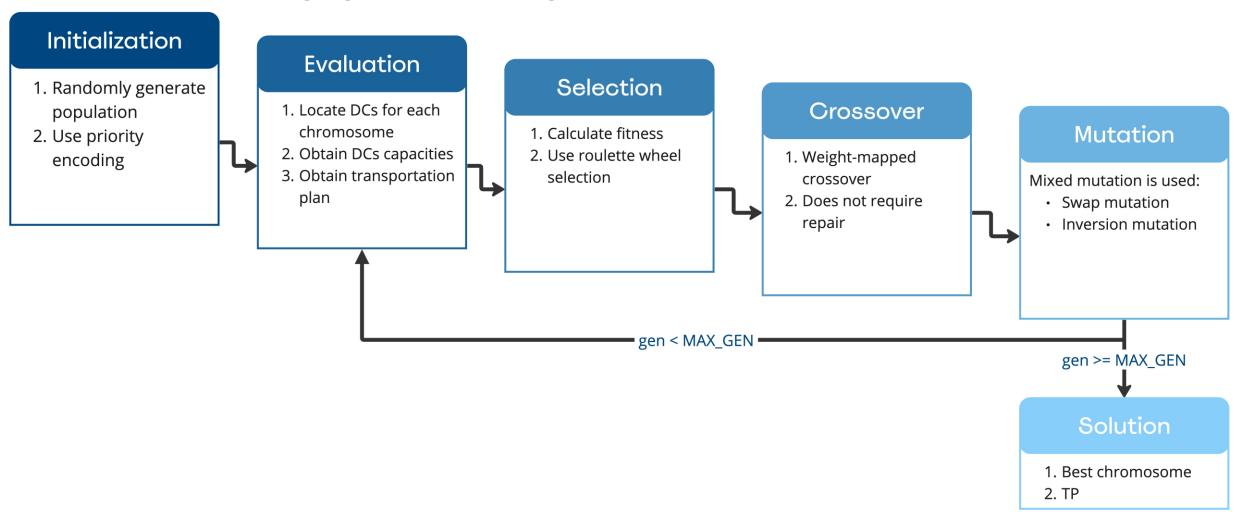
$$v_{ij}^{I} \ge 0, \theta_{j} \in \{0; 1\}, i = \overline{1, N}, j = \overline{1, M},$$
 (7)

$$\tau^I = (\tau_1^I, \tau_2^I \dots \tau_N^I), \qquad \tau^I \in \Omega^N. \tag{8}$$

Solution approach

We are going to use the combination of:

- genetic theory;
- optimal set partition theory.


We propose:

- modify approach from optimal partition of sets theory and take into consideration two stages and transportation plan;
- modify the chromosome evaluation procedure in the form locating DCs and building a transportation plan.

Algorithm for solving

We propose the following algorithm for solving

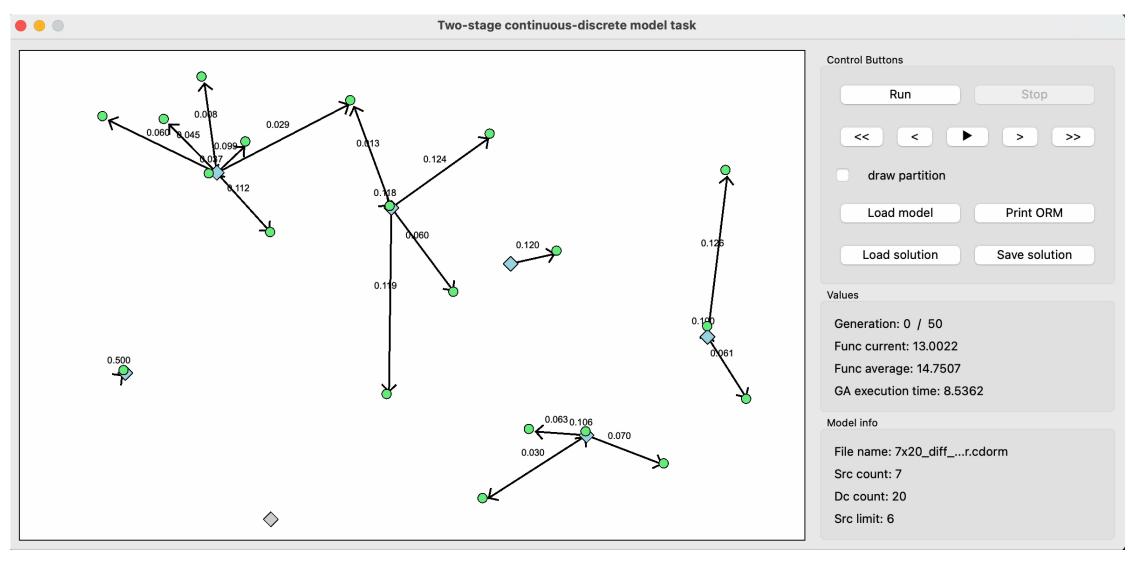
Software implementation

The proposed algorithm is implemented using the following technologies:

- C++
- Python
- Qt6

Model task – initial parameters

Let's apply proposed solution to the following model task:


GA parameters	
Population size:	50
Max generations:	50
Initial mutation probability:	0.15

Optimal partition parameters		
Max iter:	1000	
Solver grid:	h: 100 steps v: 50 steps	
Tolerance	1e-4	

Model task parameters	
Number of SRC(<i>M</i>): Number of DC(<i>N</i>): Limit for SRC (<i>L</i>):	7 20 6
Area size:	rectangle: w = [0; 2]; h = [0;1]
SRC capacities vector:	[0.4, 0.39, 0.41, 0.42, 0.38, 0.45, 0.5] sum = 2.95
DC demands vector:	$ [0.5, 0.008, 0.126, 0.07, 0.06, 0.03, 0.119, 0.037, 0.12, 0.112, 0.099, \\ 0.045, 0.124, 0.06, 0.1, 0.063, 0.106, 0.118, 0.042, 0.061] \\ sum = 2.0 $
SRC activation costs vector:	[1.5, 1.3, 1.35, 1.2, 1.8, 1.5, 1.56]

Model task – solution process

Conclusion

- Investigated and described a system of medical logistics under crisis conditions;
- proposed a practical problem statement that addresses the weak points of the mentioned system;
- developed a mathematical model for the described problem;
- utilized the combination of genetic and optimal partition of sets theories as a solution for this problem;
- illustrated its work via solving model task.

Future research

- Real distance utilization during solving
- Time interval constraints for a discrete part of the problem
- Consider the influence of regional centers

International workshop: Characteristics of Green Technological Transformation in Accordance with EGD Vision Uzhhorod, Ukraine

Advancing sustainability in medical supply chains through two-stage continuous-discrete location problem

Oleksii Serhieiev, postgraduate student, Ukraine

Contacts:

 \bowtie

serhieiev.o.s@nmu.one

us.s.a@nmu.one

